Received 4 December 2006

Accepted 6 December 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

H.-T. Xia,^a* Y.-F. Liu,^a S.-P. Yang^a and D.-Q. Wang^b

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang Jiangsu 222005, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: xht161006@hhit.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.054 wR factor = 0.152 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

6,6'-Dimethoxy-2,2'-(propane-1,3-diyldiiminodimethylene)diphenol

In the title compound, $C_{19}H_{26}N_2O_4$, the molecules are linked into sheets *via* $C-H\cdots O$, $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds. There are no significant intermolecular interactions between adjacent sheets.

Comment

As part of our ongoing research into the crystal structures of *o*-vanillin diamine derivatives, we have recently reported the crystal structure of 6,6'-dimethoxy-2,2'-(ethane-1,3-diyldiiminodimethylene)diphenol (Xia *et al.*, 2006). We report here a similar structure of 6,6'-dimethoxy-2,2'-(propane-1,3diyldiiminodimethylene)diphenol, (I) (Fig. 1). In (I), the dihedral angle between the two benzene rings is 30.51 (10)°. The molecules are linked into chains through intermolecular N-H···O and O-H···N hydrogen bonds (Fig. 2 and Table 1), generating an $R_2^2(7)$ ring (Bernstein *et al.*, 1995). In addition, there is an $R_2^2(9)[R_1^2(5)R_2^2(12)R_6^6(40)]$ motif (García-Báez *et al.*, 2002) in the molecular chains, formed from intermolecular N-H···O, C-H···O and O-H···N hydrogen bonds. There are no direction-specific interactions between adjacent chains in the three-dimensional network structure.

Experimental

A solution of N,N'-bis(2-hydroxy-3-methoxybenzyl)propanediamine (10 mmol) in methanol–chloroform (1:2 v/v, 30 ml) and solid NaBH₄ (40 mmol) were mixed. The mixture was stirred at room temperature for 24 h and then filtered. The filtrate was allowed to evaporate slowly, giving single crystals of (I).

Crystal data

a	TT 0010 (0) 33
$C_{19}H_{26}N_2O_4$	V = 934.2 (6) A ³
$M_r = 346.42$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.231 \text{ Mg m}^{-3}$
a = 9.278 (3) Å	Mo $K\alpha$ radiation
b = 10.013 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 10.816 (4) Å	T = 298 (2) K
$\alpha = 92.144 \ (4)^{\circ}$	Block, colourless
$\beta = 98.550 \ (4)^{\circ}$	$0.23 \times 0.21 \times 0.17 \text{ mm}$
$\gamma = 109.215 \ (4)^{\circ}$	

© 2007 International Union of Crystallography All rights reserved

organic papers

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.980, T_{\max} = 0.985$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.152$ S = 1.02 3234 reflections 228 parameters H-atom parameters constrained 4873 measured reflections 3234 independent reflections 2033 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.018$ $\theta_{\text{max}} = 25.0^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0655P)^2 \\ &+ 0.3501P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.42 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.42 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O4^i$	0.90	2.45	2.895 (3)	111
$O3-H3\cdots N1^i$	0.82	1.90	2.674 (3)	157
$N2-H2\cdots O1^{ii}$	0.90	1.83	2.721 (3)	170
$N2-H2\cdots O2^{ii}$	0.90	2.65	2.951 (3)	101
$C7-H7B\cdots O3^{ii}$	0.96	2.69	3.536 (4)	148
$C19-H19B\cdotsO1^{i}$	0.96	2.69	3.491 (4)	141

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

All H atoms were located in difference Fourier maps but were treated as riding atoms, with C–H distances of 0.93 Å (aryl), 0.96 Å (methyl), 0.97 Å (methylene), O–H distances of 0.82 Å and N–H distances of 0.90 Å (amino), and with $U_{\rm iso}(\rm H) = 1.2(\rm C,N)$ (aryl, methylene, amino) or $1.5U_{\rm eq}(\rm C,O)$ (methyl or hydroxy).

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- García-Báez, E. V., Martínez-Martínez, F. J., Höpfl, H. & Padilla-Martínez, I. I. (2002). Cryst. Growth Des. 3, 34–45.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A portion of the crystal structure of (I), showing the formation of a hydrogen-bonded chain built from C-H···O, N-H···O and O-H···N interactions. For clarity, H atoms not involved in hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry codes: (A) 1 - x, -y, 1 - z; (B) 1 - x, 1 - y, 1 - z; (C) x, 1 + y, z.]

- Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
- Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, 05864–05865.